1. Takahagi W., Kitadai N., Okada S., Zhou H., Takai K., Yamada t., 2023. Quantification of polysulfide species in aqueous sulfur thermocell. Chemistry Letters 52, 197-201. DOI:10.1246/c1.220486
2. Yamaguchi A., Arai K., An Niza El Aisnada, Lee J., Kitadai N., Nakamura R., Miyauchi M., 2023.Design Strategy for CO2 Reduction Metal Sulfide Electrocatalysts Based on Multi-regression Analysis. Materia 62, 40-47. DOI:10.2320/materia.62.40
3. Kitadai N, Shimamura S., Takahagi W., Miyazaki M., Tasumi E., Okada S., 2023. Elemental sulfur, hydrogen sulfide, and carbon monoxide-driven dimerization of glycine at sub-millimolar concentrations: Implications for the orgin of life. Geochimica et Cosmochimica Acta 349, 55-63. DOI:10.1016/j.gca.2023.03.033
4. Danielache S. O., Iwama G., Shinkai M., Oinuma M., Simoncini E., Grassi T., 2023. Introducing atmospheric photochemical isotopic processes to the PATMO atmospheric code. Geochemical Journal 57, 42-58. DOI:10.2343/geochemj.GJ23004
5. Shimizu, Y., Tanimura, N., Matsuura, T., 2023. ePURE_JSBML: A tool for constructing a deterministic model of a reconstituted Escherichia coli protein translation system with a user-specified nucleic acid sequence. Advanced Biology 7, e2200177. DOI:10.1002/adbi.202200177
6. Eric Smith, 2023. Beyond fitness: The nature of selection acting through the constructive steps of lifecycles. Evolution qpad06. DOI:10.1093/evolut/qpad068
7. Praful Gagrani and Eric Smith, 2023. Action functional gradient descent algorithm for estimating escape paths in stochastic chemical reaction networks. Physical Review E 107, 34305. DOI:10.1103/PhysRevE.107.034305
8. Watanabe Y., Tajika E., Ozaki K., 2023. Biogeochemical transformations after the emergence of oxygenic photosynthesis and conditions for the first rise of atmospheric oxygen. Geobiology 0, 1-19. DOI:10.1111/gbi.12554
9. Tatsuya Yoshida, Shohei Aoki, Yuichiro Ueno, Naoki Terada, Yuki Nakamura, Kimie Shiobara, Nao Yoshida, Hiromu Nakagawa, Shotaro Sakai, Shungo Koyama, 2023. Strong Depletion of 13C in CO Induced by Photolysis of CO2 in the Martian Atmosphere, Calculated by a Photochemical Model. The Planetary Science Journal 4 (3), 53-53. doi.org/10.3847/psj/acc030
10. A. Piccialli, A. C. Vandaele, Y. Willame, A. Maattanen, L. Trompet, J. T. Erwin, F. Daerden, L. Neary, S. Aoki, S. Viscardy, I. R. Thomas, C. Depiesse, B. Ristic, J. P. Mason, M. R. Patel, M. J. Wolff, A. S. J. Khayat, G. Bellucci, J.‐J. Lopez‐Moreno, 2023. Martian Ozone Observed by TGO/NOMAD‐UVIS Solar Occultation: An Inter‐Comparison of Three Retrieval Methods. Earth and Space Science 10 (2). e2022EA002429. doi.org/10.1029/2022ea002429
11. L. Trompet, A.C. Vandaele, I. Thomas, S. Aoki, F. Daerden, J. Erwin, Z. Flimon, A. Mahieux, L. Neary, S. Robert, G. Villanueva, G. Liuzzi, Lopez Valverde, A. Brines, G. Bellucci, J. J. Lopez‐Moreno, M. R. Patel, 2023. Carbon dioxide retrievals from NOMAD‐SO on ESA’s ExoMars Trace Gas Orbiter and temperature profiles retrievals with the hydrostatic equilibrium equation. II. Temperature variabilities in the mesosphere at Mars terminator. Journal of Geophysical Research: Planets 128, 3. e2022JE007279. doi.org/10.1029/2022je007279
12. L. Trompet, A.C. Vandaele, I. Thomas, S. Aoki, F. Daerden, J. Erwin, Z. Flimon, A. Mahieux, L. Neary, S. Robert, G. Villanueva, G. Liuzzi, Lopez‐Valverde, A. Brines, G. Bellucci, J. J. Lopez‐Moreno, M. R. Patel, 2023. Carbon dioxide retrievals from NOMAD‐SO on ESA’s ExoMars Trace Gas Orbiter and temperature profiles retrievals with the hydrostatic equilibrium equation. I. Description of the method. Journal of Geophysical Research: Planets 128, 3. e2022JE007277. doi.org/10.1029/2022je007277
13. Ashimananda Modak, Shohei Aoki, et al., 2023. Retrieval of Martian atmospheric CO vertical profiles from NOMAD observations during the 1st year of TGO operations. Journal of Geophysical Research: Planets 128, 3. e2022JE007282. doi.org/10.1029/2022je007282
2022年
1. Yoshida, T., Aoki, S., Ueno, Y., Terada, N., Nakamura, Y., Shiobara, K., Yoshida, N., Nakagawa, H., Sakai, S., Koyama, S., 2022. Strong depletion of 13C in CO induced by photolysis of CO2 in the Martian atmosphere calculated by a photochemical model. Planetary Science Journal 4. DOI:10.3847/PSJ/acc030
2. Taguchi, K., Gilbert, A., Sherwood Lollar, B., Giunta, T., Boreham, C.J., Liu, Q., Horita, J., Ueno, Y., 2022. Low 13C-13C abundances in abiotic ethane. Nature Communications 13. DOI:10.1038/s41467-022-33538-9
3. Kubota, Y., Matsu’ura, F., Shimizu, K., Ishikawa, A., Ueno, Y., 2022. Sulfur in Archean komatiite implies early subduction of oceanic lithosphere. Earth and Planetary Science Letters 598. DOI:10.1016/j.epsl.2022.117826
4. Igisu, M., Ueno, Y., Komiya, T., Awramik, S.M., Ikemoto, Y., Takai, K., 2022. Spatial distribution of organic functional groups in Ediacaran acritarchs from the Doushantuo Formation in South China as revealed by micro-FTIR spectroscopy. Precambrian Research 373. DOI:10.1016/j.precamres.2022.106628
5. Caruso, S., Fiorentini, M.L., Champion, D.C., Lu, Y., Ueno, Y., Smithies, R.H., 2022. Sulfur isotope systematics of granitoids from the Yilgarn Craton shed new light on the fluid reservoirs of Neoarchean orogenic gold deposits. Precambrian Research 326, 199-213. DOI:10.1016/j.gca.2022.03.023
6. Igisu, M., Takahashi, Y., Uematsu, K., Takeichi, Y., Ueno, Y., Takai, K., 2022. STXM-XANES analyses of carbonaceous matter in seafloor hydrothermal deposits from the ~3.5 Ga Dresser Formation in the North Pole area, Western Australia. Geochemical Journal 56, 129-133. DOI:10.2343/geochemj.GJ22010
7. Endo, Y., Sekine, Y., Ueno, Y., 2022. Sulfur mass-independent fractionation during SO2 photolysis in low-temperature/pressure atmospheres. Chemical Geology 609. DOI:10.1016/j.chemgeo.2022.121064
8. Zang, X., Ueno, Y., Kitadai, N., 2022. Photochemical synthesis of ammonia and amino acids from nitrous oxide. Astrobiology 22, 387-398. DOI:10.1089/ast.2021.0064
9. Eric Smith , 2022. The information geometry of two-field functional integrals. Information Geometry 5, 427-492. DOI:10.1007/s41884-022-00071-z
10. Kitadai N., Okada S., Makabe A., Tasumi E., Miyazaki M., 2022. Polysulfide-assisted urea synthesis from carbon monoxide and ammonia in water. PeerJ Organic Chemistry 4, e6. DOI:10.7717/peerj-ochem.6
11. Kitadai N., 2022. On the potential benefit of prebiotic chemistry to the habitability of the present Earth. Viva Origino 50, 4. DOI:10.50968/vivaorigino.50_4
12. Julien M., Zhao Y., Ma R., Zhou Y.P., Nakagawa M., Yamada K., Yoshida N., Remaud G.S., Gilbert A. 2022. Re-evaluation of the 13C isotope fractionation associated with lipids biosynthesis by position-specific isotope analysis of plant fatty acids. Organic Geochemistry 174, 104516. 10.1016/j.orggeochem.2022.104516
13. Broadley M. W., K. Yamada, et al., 2022. The noble gas and nitrogen relationship between Ryugu and carbonaceous chondrites. Geochimica et Cosmochimica Acta 345, 62-7. 10.1016/j.gca.2023.01.020
14. Okazaki R. K. Yamada, et al., 2022. First asteroid gas sample delivered by the Hayabusa2 mission: A treasure box from Ryugu. Science Advances 8, 2375-2548. 10.1126/sciadv.abo7239
15. Miura Y.N., Okazaki R., Takano Y., Sakamoto K., Tachibana S., Yamada K., Sakai s., Sawada H. 2022. The GAs Extraction and Analyse system (GAEA) for immediate extraction and measurements of volatiles in the Hayabusa2 sample container. Earth, Planets and Space 74. 10.1186/s40623-022-01638-x
16. Kudo K., Toyoda S., Yamada K., Yoshida N. Sasano D., Kosugi N., Muata A., Uchida H., Nishino S., 2022. Source analysis of dissolved methane in Chukchi Sea and Bering Strait during summer-autumn of 2012 and 2013. Marine Chemistry 243. 10.1016/j.marchem.2022.104119
17. A. Gilbert, Mayuko Nakagawa, Koudai Taguchi, Naizhong Zhang, Akifumi Nishida, Naohiro Yoshida, 2022. Hydrocarbon Cycling in the Tokamachi Mud Volcano (Japan): Insights from Isotopologue and Metataxonomic Analyses. Microorganisms 7, 1417. 10.3390/microorganisms10071417
18. A. Brines, M. A. Lopez‐Valverde, A. Stolzenbach, A. Modak, B. Funke, F. G. Galindo, S. Aoki, G. L. Villanueva, G. Liuzzi, I. R. Thomas, J. T. Erwin, U. Grabowski, F. Forget, J. J. Lopez‐Moreno, J. Rodriguez‐Gomez, F. Daerden, L. Trompet, B. Ristic, M. R. Patel, G. Bellucci, A. C. Vandaele, 2022. Water vapor vertical distribution on Mars during perihelion season of MY 34 and MY 35 with ExoMars‐TGO/NOMAD observations. Journal of Geophysical Research: Planets 128, 3. e2022JE007273. doi.org/10.1029/2022je007273
19. Miguel‐Angel Lopez Valverde, Shohei Aoki, et al. 2022. Martian atmospheric temperature and density profiles during the 1st year of NOMAD/TGO solar occultation measurements. Journal of Geophysical Research: Planets 128, 2. e2022JE007278. doi.org/10.1029/2022je007278
20. J. A. Holmes, S. R. Lewis, M. R. Patel, J. Alday, S. Aoki, G. Liuzzi, G. L. Villanueva, M. M. J. Crismani, A. A. Fedorova, K. S. Olsen, D. M. Kass, A. C. Vandaele, O. Korablev, 2022. Global variations in water vapour and saturation state throughout the Mars Year 34 dusty season. Journal of Geophysical Research: Planets 127, 10. e2022JE007203. doi.org/10.1029/2022je007203
21. S. Aoki, A. C. Vandaele, F. Daerden, G. L. Villanueva, G. Liuzzi, R. T. Clancy, M. A. Lopez‐Valverde, A. Brines, I. R. Thomas, L. Trompet, J. T. Erwin, L. Neary, S. Robert, A. Piccialli, J. A. Holmes, M. R. Patel, N. Yoshida, J. Whiteway, M. D. Smith, B. Ristic, G. Bellucci, J. J. Lopez‐Moreno, A. A. Fedorova, 2022. Global vertical distribution of water vapor on Mars: Results from 3.5 years of ExoMars‐TGO/NOMAD science operations. Journal of Geophysical Research: Planets 127, 9. e2022JE007231. doi.org/10.1029/2022je007231
22. F. Daerden, S. Aoki, et al., 2022. Planet‐Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters 49 (11), e2022GL098821. doi.org/10.1029/2022gl098821 Geronimo L. Villanueva, Shohei Aoki, et al., 2022. The deuterium isotopic ratio of water released from the Martian caps as measured with TGO/NOMAD. Geophysical Research Letters 49 (12). e2022GL098161. doi.org/10.1029/2022gl098161
23. Nao Yoshida, Shohei Aoki, et al., 2022. Variations in Vertical CO/CO2 Profiles in the Martian Mesosphere and Lower Thermosphere Measured by the ExoMars TGO/NOMAD: Implications of Variations in Eddy Diffusion Coefficient. Geophysical Research Letters 49 (10), e2022GL098485. doi.org/10.1029/2022GL098485
24. S. Aoki, L. Gkouvelis, J.‐C. Gerard, L. Soret, B. Hubert, M. A. Lopez‐Valverde, F. Gonzalez‐Galindo, H. Sagawa, I. R. Thomas, B. Ristic, Y. Willame, C. Depiesse, J. Mason, M. R. Patel, G. Bellucci, J.‐J. Lopez‐Moreno, F. Daerden, A. C. Vandaele, 2022. Density and temperature of the upper mesosphere and lower thermosphere of Mars retrieved from the OI 557.7 nm dayglow measured by TGO/NOMAD. Journal of Geophysical Research: Planets 127, 6. e2022JE007206. doi.org/10.1029/2022JE007206
25. L. Soret, J.‐C. Gerard, S. Aoki, L. Gkouvelis, I. R. Thomas, B. Ristic, B. Hubert, Y. Willame, C. Depiesse, A.C. Vandaele, M. R. Patel, J. P. Mason, F. Daerden, J.‐J. Lopez‐Moreno, G. Bellucci, 2022. The Mars oxygen visible dayglow: A MARTIAN YEAR OF NOMAD/UVIS OBSERVATIONS. Journal of Geophysical Research: Planets 127, 6. e2022JE007220. doi.org/10.1029/2022JE007220
26. Ozaki Kazumi, 2022. Impacts of the evolution of photosynthesis on Earth's environment. The Japanese Society of Photosynthesis Research 32, 140-150.
27. Masahiro Yamamoto, Yoshihiro Takaki, Hiroyuki Kashima, Miwako Tsuda, Akiko Tanizaki, Ryuhei Nakamura , Ken Takai, 2022. In situ electrosynthetic bacterial growth using electricity generated by a deep-sea hydrothermal vent. ISME Journal 17, 12-20. 10.1038/s41396-022-01316-6